Lyot 改进型退偏器单色光的退偏性能

任树锋^{1,2} 吴福全¹ 吴闻迪¹

(¹曲阜师范大学激光研究所,山东省激光偏光与信息技术重点实验室,山东曲阜 273165) ²菏泽学院物理系,山东 菏泽 274015

摘要为了研究 Lyot 改进型退偏器对单色光的退偏性能,采用多光束叠加的方法,得到该退偏器的退偏度关于入射 线偏振光振动方位角和总延迟量的表达式。分析表明,在退偏器的楔角达到一定值的前提下,总延迟量 $\delta = (N + 1/2)\pi(N 为整数)时,所有方位角入射的线偏振光都有理想的退偏效果;<math>\delta = N\pi$ 时,方位角对退偏度的影响最大; δ 为其他值时,方位角对退偏度的影响介于以上二者之间。采用 405 nm 的激光光源,经过扩束准直,对楔角为 6° 的石英晶体 Lyot 改进型退偏器的退偏度进行了实验测试,结果验证了理论分析;通过调节入射角使总延迟量 δ 接 近 $(N + 1/2)\pi$,此时退偏度超过 98.8%。

关键词 光学器件;偏振光学;Lyot改进型退偏器;多光束叠加;退偏度
 中图分类号 O436.3 文献标识码 A doi: 10.3788/AOS201333.0423001

Depolarization Performance for Monochromatic Light of an Improved Lyot Depolarizer

Ren Shufeng^{1,2} Wu Fuquan¹ Wu Wendi¹

¹ Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Laser Institute of Qufu Normal University, Qufu, Shandong 273165, China ² Department of Physics, Heze University, Heze, Shandong 274015, China

Abstract In order to study the depolarization performance for monochromatic light of improved Lyot depolarizer, the method of superposition of multiple beam is proposed. The formula for depolarization degree D that is the function of vibration azimuth angle (VAA) and total retardation is deduced. It is shown by theoretical analysis that D is ideal for any VAA when retardation $\delta = (N + 1/2)\pi$ (N is integer) on the basis of large enough wedge angle. And when $\delta = N\pi$, VAA makes greatest impact on D. When δ is assigned to the other values, the impact on D made by VAA is between the former two. Using 405 nm diode laser whose beam is expanded and collimated, experiments to measure D of sample whose wedge angle is 6° are conducted. The theoretical results are well verified by experiments. D is over 98.8% when total retardation δ is nearly $(N + 1/2)\pi$ by changing incident angle. **Key words** optical devices; polarization optics; improved Lyot depolarizer; superposition of multiple-beam; degree

of depolarization

OCIS codes 230.5440; 230.5480

1 引 言

现代光学精密测量中,往往由于光的偏振特性 与光探测器具有的偏振灵敏性不匹配而产生显著的 测量误差。消除这种影响的有效方法是在探测器前 装调退偏器。1928年,Lyot最早发明了适用于复色 光退偏的 Lyot 型退偏器,其由两块厚度比为 2:1的 沿 X 轴切割的双折射晶体平板组成,晶体光轴间的 夹角为 45°。此后出现了大量相关研究^[1~6],方法大

导师简介:吴福全(1952—),男,教授,博士生导师,主要从事偏振光学与技术等方面的研究。 E-mail: fqwu@mail.qfnu.edu.cn(通信联系人)

收稿日期: 2012-10-29; 收到修改稿日期: 2012-12-05

基金项目:国家杰出青年科学基金(11104161)资助课题。

作者简介:任树锋(1979—),男,博士研究生,讲师,主要从事偏振器件设计与分析等方面的研究。

E-mail: renshufeng7909@163.com

多采用 Mueller 矩阵^[7~9]。文献「1]用 Mueller 矩阵 与 Stokes 矢量分析了不同参数设置的 Lvot 型退偏 器的退偏情况:文献[2,3]用同样方法分析了对于入 射情况相对复杂的 Lyot 型退偏器的退偏问题;文献 [4]在分析中使用了相干矩阵;文献[5]通过分析 Lyot 改进型退偏器在空域和频域的平均 Mueller 矩阵,得到该器件对于准单色光(±10 nm)必须满 足的理想退偏条件。虽然 Mueller 矩阵是应用最多 的一种有效数学手段,但存在形式复杂、物理意义抽 象的不足。1983年以来,陆续出现了使用现代光学 相干理论研究退偏器性能的报道[6,10,11],该方法相 对简便。目前对单色光退偏的应用较多,且相对于 复色光退偏难度大。本文使用一种数学形式简单, 物理意义清晰的方法——多光束叠加[12,13],分析 Lyot 改进型退偏器的单色光退偏性能,计算其退偏 度 D^[14],并进行实验验证。

2 结构与光路

图 1 为石英晶体的 Lyot 改进型退偏器的主截面 结构及光路:该器件由两块任意厚度比的光楔组成, 楔角 α 一般只有几度。图中左侧的 d_1 、 d_2 、 d_3 为退偏器 被平行y轴的两条虚线分成的三部分厚度,总厚度为 d;右侧的 1、2 分别表示前后两半块的晶体光轴方向, 其中 1 与y轴平行,2 在 xoy 面内且与 1 的夹角为 45°, A 为入射线偏振光的振幅。线偏振光以振动方位角 θ (这里指入射光振动方向与前半块晶体光轴的夹角) 垂直入射,透过后分成 4 个部分: oo 、oe 光和 ee、eo 光。其中 ee 和 oo 为传播方向一致、振动方向相互垂 直的两线偏振光, oe 和 eo 则为偏振方向相反的两线 偏振光。需要注意的是方位角为 0°或 90°时,透过的 分别只有 ee、eo 或 oo 、oe 两线偏振光。

Fig. 1 Principal section of improved Loyt depolarizer and the light path of the incident linearly polarized light of arbitrary vibration azimuth angle

3 多光束叠加分析

尽管 Lyot 改进型退偏器的楔角一般只有几度, 但仍存在分束现象,这说明透射光的叠加现象不只 发生在入射的同一母光线产生的子光线内部,不同 入射点的母光线产生的子光线之间也会发生叠加。 对应光线情况,面光源入射时将分解为多个不同传 播方向的子面光源。以平面简谐波为例,应用多光 束叠加的方法,得到退偏器关于方位角和总延迟量 的退偏度表达式,进而实现退偏性能的定量分析。

严格来讲,透射光场中任一点的振动应该来自同一母光束的 ee、oo 光与来自不同母光束 eo、oe 光的叠加。为简便起见,假定垂直入射时 ee、oo、eo 和 oe 4 束光都平行 z 轴,即不分束。虽然这样处理对 eo、oe 光的初相位有影响,但由于对退偏振起作用的是相位差以及相位差在图 1 中 y 轴方向的变化,所以整体上叠加的最终效果是相同的。图 1 中坐标 原点取在入射端面最底端,设在叠加位置处 oo 光的 初相位为 0,可得透射光的初相位为

$$\varphi_{00}=0, \qquad (1)$$

$$\varphi_{\rm eo} = -ky + \frac{2\pi}{\lambda}(n_{\rm e} - n_{\rm o})(d_1 + d_2), \qquad (2)$$

$$\varphi_{\rm ee} = \frac{2\pi}{\lambda} (n_{\rm e} - n_{\rm o}) d = \delta, \qquad (3)$$

$$\varphi_{\rm oe} = ky + \frac{2\pi}{\lambda} (n_{\rm e} - n_{\rm o}) d_3, \qquad (4)$$

式中 λ 为真空中的光波长, n_e 、 n_o 分别为石英晶体中 e、o光的主折射率, $k = \frac{2\pi}{\lambda}(n_e - n_o)\tan\alpha$ 为出射光的 相位或相位差的变化率。需要注意的是在考虑光束 偏振的实际情况时,k的表达式有所不同,但数值变 化极小。

在忽略吸收、反射与散射等能量损失的情况下, 参照图1可得各透射光的振幅:

$$A_{\infty} = A\sin\theta\cos 45^{\circ} = \frac{A}{\sqrt{2}}\sin\theta, \qquad (5)$$

$$A_{\rm eo} = A\cos\theta \sin 45^\circ = \frac{A}{\sqrt{2}}\cos\theta,$$
 (6)

$$A_{\rm ee} = A\cos\theta\cos 45^\circ = \frac{A}{\sqrt{2}}\cos\theta,\qquad(7)$$

$$A_{\rm oe} = A\sin\,\theta \sin\,45^\circ = \frac{A}{\sqrt{2}}\sin\,\theta. \tag{8}$$

令 oo、eo 光与 ee、oe 光分别两两叠加,这样分别得 到频率和振动方向一致,振幅和初相位变化的 o 光 和 e 光(对出射端晶体而言),由(1)~(8)式可得叠 加后两束光振幅的平方为

$$A_{\circ}^{2} = \frac{A^{2}}{2} [1 + \cos(ky + \delta' - \delta)\sin 2\theta], \quad (9)$$
$$A_{\varepsilon}^{2} = \frac{A^{2}}{2} [1 + \cos(ky + \delta' - \delta)\sin 2\theta], \quad (10)$$

式中 $\delta' = \frac{2\pi}{\lambda} (n_e - n_o) d_3 \cdot \mathbf{h}(9) \cdot (10)$ 两式可以得到

4 束透射光叠加后的光强为

$$I = A^{2} [1 + \cos(ky + \delta' - \delta) \sin 2\theta].$$
(11)
令成的 e 光和 o 光的初相位和相位差为

$$\tan \varphi_{\circ} = \frac{-\sin(ky + \delta' - \delta)}{\tan \theta + \cos(ky + \delta' - \delta)}, \quad (12)$$

$$\tan \varphi_{\rm e} = \frac{\sin \delta + \tan \theta \sin (ky + \delta')}{\cos \delta + \tan \theta \cos (ky + \delta')}, \quad (13)$$

$$\Delta \varphi = \varphi_{\rm e} - \varphi_{\rm o}. \tag{14}$$

由(12)~(14)式,通过三角函数运算,可得
$$\Delta \alpha = kv + \delta'$$
 (15)

需要注意的是(2)、(4)、(12)、(13)式和δ'的表 达式一般要随坐标系的变化和入射方向不同而发生 变化,但不影响下面的分析计算结果。

由(11)、(15)式看到,叠加而成的椭圆偏振光的 光强和相位差都在 y 方向上以相同的周期变化: (11)式决定该椭圆偏振光的光强沿 y 方向按余弦 规律变化,其变化幅度又受方位角影响, θ 为 0° 、90° 时变化为 0; θ 为 45°时变化幅度最大,为 0~2 A^2 ; θ 为其他值时的情况介于二者之间。相位差的变化决 定两光合成的偏振态为椭圆率沿 v 方向周期变化 的椭圆偏振光。而 k 决定变化周期的大小,同时也 是影响退偏性能非常重要的基础因素。仅就(15)式 而言,k 越大,退偏效果越好。k 随楔角的变大而变 大,大的楔角会加大 eo 和 oe 的分束角,产生比较严 重的偏振像差^[15]。图 2 为使用 405 nm 光源、θ 取 0°、光斑直径 6 mm 时,退偏度 D 随楔角变化的实验 曲线(图中黑点为实验值)。图中曲线表明,过楔角 对退偏度 D 的影响具有"饱和性",即当楔角达到一 定值时,退偏度几乎不随楔角变化。因此,只要洗择 适当的楔角便可。

对于退偏器而言,退偏度是衡量器件性能的主要指标。若单色线偏振光经退偏器后的剩余偏振度 P为

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}},$$
(16)

那么退偏度 D 为

$$D = 1 - P = \frac{2I_{\min}}{I_{\max} + I_{\min}},$$
 (17)

式中 I_{max}、I_{min}分别为光透过检偏器的最大与最小光强。

图 3 为在新旧坐标系中表示的透射光合成的一 般椭圆偏振态,*a*、*b* 为两个主轴大小,它们在一个周 期内的变化范围均为 0~√2A。由图中两个坐标系 中的椭圆偏振光的表达式及其关系^[16]可得

$$a^2 = A_o^2 (1 + \sin 2\psi \cos \Delta \varphi), \qquad (18)$$

$$b^2 = A_o^2 (1 - \sin 2\psi \cos \Delta \varphi). \tag{19}$$

图 3 透射光叠加合成的椭圆偏振态示意图

Fig. 3 Diagram of elliptically polarized light synthesized by emergent lights

由 $A_{\circ} = A_{\circ}$,可得 $\psi = 45^{\circ}$ 。将(9)、(15)式代人 (18)、(19)式可得

$$a^{2} = \frac{A^{2}}{2} [1 + \cos(ky + \delta' - \delta)\sin 2\theta] \times [1 + \cos(ky + \delta')], \qquad (20)$$
$$b^{2} = \frac{A^{2}}{2} [1 + \cos(ky + \delta' - \delta)\sin 2\theta] \times$$

$$[1 - \cos(ky + \delta')]. \tag{21}$$

令 $\phi = k_y + \delta', \forall (20), (21)$ 式在 ϕ 的一个周期内积分,得

$$m = \int_{0}^{2\pi} a^2 d\Phi = 2\pi + \pi \sin 2\theta \cos \delta, \qquad (22)$$

$$n = \int_{0}^{2\pi} b^2 d\Phi = 2\pi - \pi \sin 2\theta \cos \delta, \qquad (23)$$

m、n可以看作一个周期内不同椭圆率的椭圆偏振光 强度在两个主轴的投影之和,也即偏振度计算公式中 的透射光强的最大值 I_{max} 和最小值 I_{min}。由(22)、(23) 式可以看到,m、n的大小关系随方位角和总延迟量的 取值不同而变化,因此退偏度的表达式有两种: m<n时,

$$D = \frac{2m}{m+n} = \frac{2+\sin 2\theta\cos\delta}{2}; \qquad (24)$$

m > n时,

$$D = \frac{2n}{m+n} = \frac{2-\sin 2\theta \cos \delta}{2}.$$
 (25)

虽然退偏度的表达式不统一,但它作为 θ 和 δ 的正、余弦函数有很好的对称性,因此只需计算 θ 在 $[0,\pi/2]$ 内变化时的退偏度即可。

图 4 为总延迟量 δ 取不同值时 Lyot 改进型退 偏器的退偏度 D 随 θ 变化的理论曲线。由图中曲 线可见,对于一定的 δ ,D 随 θ 的变化一般呈抛物线 形: θ =45°时退偏度最低,并向两侧对称升高,0°和 90°时达到 100%;对不同的总延迟量,退偏度变化 幅度不同: δ = N π 时,变化范围最大,为 50% ~ 100%; δ =(N+1/2) π 时,退偏度保持 100%不变; δ 为其他值时,退偏度变化介于以上二者之间。

Fig. 4 Variation of D with θ of different total retardations

图 5 为振动方位角 θ 取不同值时 Lyot 改进型 退偏器的退偏度随总延迟量变化的理论曲线。由图 中曲线可见,退偏度随总延迟量在 0°~180°内变化时 具有对称性:δ=90°时最大,达到 100%,向两侧对称 减小;对于不同的振动方位角,退偏度随总延迟量的 变化快慢不同,振动方位角为 45°时变化最快,0°和 90°时保持 100%不变,这与上述分析是一致的。

4 实验验证

实验样品选用石英晶体制作,楔角为 6°,厚度 为 8 mm,通光面积为 12 mm×12 mm。为测试样品 的退偏度,建立如图 6 所示的光路。光源选用波长 为 405 nm 的半导体激光器, $\lambda/4$ 波片是将线偏振光 转化为圆偏振光,透镜组(f_1 =4.5 mm、 Φ_1 =5 mm, f_2 =105 mm、 Φ_2 =25 mm)将激光扩束、准直,准直 后的光束直径为 25 mm;可变光阑用来控制光束截 面大小,本实验中光阑孔径取 8 mm。旋转起偏棱 镜可以改变入射线偏振光的方位角,而旋转检偏棱 镜可以得到透射的最小光强和最大光强。

由于退偏效果受光程差影响较大,所以实验中 要尽量保证光的垂直入射。为此,由前向后依次调 节每个器件的反射光与入射光重合,并且注意起偏 棱镜和检偏棱镜旋转时反射光点的稳定性。另外, 为减小光源强度起伏的影响,每个数据都要进行多 次测量,并将4个可靠数据取平均来计算退偏度。

图 7 为振动方位角从 0°~90°变化时的退偏度 实验测量值(每隔 5°测一个值)。由图可见,除了 0° 和 90°附近差别超过 1%外,其他振动方位角测得的 退偏度与理论值吻合得很好。原因主要有两方面: 1)由楔角造成:楔角是影响退偏度的基础因素,而理 论分析是在楔角足够大的情况下忽略其影响,理论 上无论楔角为何值,退偏度都不会达到 100%;2)与 偏振态变化的空间频率有关:振动方位角为0°和 90°时透射光分为两束,其他方位角时分为4束,通 过简单分析可知,前者的变化频率约为后者的一半, 在一定程度上造成前者退偏度的实验值与理论值的 偏差更大一些。

为了验证总延迟量 $\delta = (N+1/2)\pi$ 时有理想的 退偏效果,采取了在图 1 中 xoz 平面内改变光入射 角的方法进行了测试,表 1 给出了光以 5.2°入射时, 样品对不同振动方位角线偏振光的退偏度。由表中 数据可以看到,样品在各个方位角上的退偏度均超 过 98.8%,理论结果得到了很好验证。

表 1 入射角为 5.2°时不同振动方位角的退偏度

Table 1 Depolarization degree of different vibration aizimuth angles when incident angle is 5. 2°

$\theta / (\circ)$	$D / \frac{0}{10}$
0	98.82
10	98.92
30	99.63
45	99.19
60	99.14
70	99.05
80	99.03
90	98.88

5 结 论

利用多光束叠加的方法研究了 Lyot 改进型退偏 器对单色光的退偏性能,推导出退偏度的数学表达 式,理论分析表明:在退偏器的楔角足够大的前提下, 退偏器相对于入射波长的总延迟量为(N+1/2)π时, 对任意方位角的线偏振光的退偏效果都非常理想; 退偏器相对于入射波长的总延迟量为 Nπ 时,偏振 相关性最明显,振动方位角为 45°时退偏效果最差, 0°、90°时最佳;总延迟量为其他值时,退偏效果介于 以上二者之间。实验结果很好地验证了理论分析结 果,并证明通过改变入射角可以实现对单色线偏振 光的理想退偏。多光束叠加方法简便,物理意义清 晰,相对于 Mueller 矩阵更容易对退偏器的性能实 现全面考察,为退偏器性能的理论分析和计算提供 了新的思路。

参考文献

- A. P. Loeber. Depolarization of white light by a birefringent crystal. II. The Lyot depolarizer [J]. J. Opt. Soc. Am., 1982, 72(5): 650~656
- 2 J. Carlos G. de Sande, Gemma Piquero, Cristina Teijeiro. Polarization changes at Lyot depolarizer output for different types of input beams [J]. J. Opt. Am. Soc. A, 2012, 29(3): 278~ 284
- 3 Paul H. Richter. The Lyot depolarizer in quasimonochromatic light [J]. J. Opt. Soc. Am., 1979, 69(3): 460~463
- 4 Kiyofumi Mochizuki. Degree of polarization in jointed fibers: the Lyot depolarizer [J]. Appl. Opt., 1984, 23(19): 3284~3288
- 5 Chi Hao, Gao Jun, Xu Senlu. A novel practical quasimonochromatic depolarizer [J]. Acta Optica Sinica, 1997, 17(8): 1097~1102
 池 灏,高 军,徐森禄. 一种实用的准单色光退偏器的研究
- [J]. 光学学报, 1997, 17(8): 1097~1102
 6 Piotr L. Makowski, Marek Z. Szymanski, Andrzej W.. Lyot depolarizer in terms of the theory of coherence-description for light of any spectrum [J]. Appl. Opt., 2012, 51(5): 626~634
- 7 Razvigor Ossikovsk. Analysis of depolarizing Mueller matrices through a symmetric decomposition [J]. J. Opt. Soc. Am. A, 2009, 26(5): 1109~1118
- 8 Razvigor Ossikovski, Clément Fallet, Angelo Pierangelo et al.. Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices [J]. Opt. Lett., 2009, 34(7): 974~976
- 9 Noé Ortega-Quijanono, Bicher Haj-Ibrahim, Enric García-Caurel et al.. Experimental validation of Mueller matrix differential decomposition [J]. Opt. Lett., 2012, 20(2): 1151~1163
- 10 K. Böhm, K. Petermann, E. Weidel. Performance of Lyot depolarizers with birefringent single-mode fibers [J]. J. Lightwave Technol., 1983, 1(1): 71~74
- 11 K. Mochizuki. Degree of polarization in jointed fibers: the Lyot depolarizer [J]. Appl. Opt., 1984, 23(19): 3284~3288
- 12 Chen Jiannong, Yi Xueyong, Zhang Libo. Poincare representation of superposed partially polarized light [J]. J. Qufu Normal University, 2000, 26(3): 54~56 陈建农,衣学勇,张立波.部分偏振光相干叠加的庞加莱球表示 [J]. 曲阜师范大学学报, 2000, 26(3): 54~56
- 13 Lin Huichuan, Liu Hui, Pu Jixiong. Extra cavity coherent superposition for generation of radially polarized beam [J]. *Chinese J. Lasers*, 2009, **36**(s1): 251~256 林惠川,刘 辉,蒲继雄. 腔外相干叠加产生径向偏振光 [J]. 中国激光, 2009, **36**(s1): 251~256
- 14 Russell A. Chipman. Depolarization index and the average degree of polarization [J]. Appl. Opt., 2005, 44(13): 2490~2495
- 15 Stephen C. McClain, Russell A. Chipman, Lloyd W. Hillman. Aberrations of a horizontal-vertical depolarizer [J]. Appl. Opt., 1992, 31(13): 2326~2331
- 16 Liao Yanbiao. Polarization Optics [M]. Beijing: Science Press, 2003. 47

廖延彪. 偏振光学[M]. 北京:科学出版社, 2003. 47

栏目编辑:张 腾